

TU Clausthal

Ausgangslage

Die Lehrveranstaltung "**Numerische Strömungsmechanik"** ist ein Wahlfach in den Masterstudiengängen. Der Aufbau gliederte sich bis zum WS 17/18 wie folgt:

- Vorlesung: traditionelle Form als Wissensvermittlung
- Übung: 3 Termine Matlab, 3 Termine OpenFOAM
- Prüfung: mündlich, konventionell

Durch die Auswertung der Evaluation und der Prüfungsprotokolle wurden folgende Problemfelder identifiziert:

- keine Folien, Darstellung der komplexen Sachverhalte schwierig
- kein direkter Bezug zur Vorlesung in der Übung
- Prüfungsinhalte nur aus dem Vorlesungsstoff

Als Folge konzentrierten sich die Studenten am bezugslosen Auswendiglernen der Vorlesungsinhalte. Das Ziel die Unsicherheit (**PANIC**) bei der Konfrontation mit dem folgenden CFD-Code zu nehmen, wurde verfehlt:

```
Foam::tmp<Foam::scalarField> Foam::lduMatrix::residual
(
    const scalarField& x,
    const scalarField& b,
    const FieldField<Field, scalar>& coupleBouCoeffs,
    const lduInterfaceFieldPtrsList& interfaces
) const
{
    tmp<scalarField> trA(new scalarField(x.size()));
    residual(trA(), x, b, coupleBouCoeffs, interfaces);
    return trA;
}
```

Lernziele

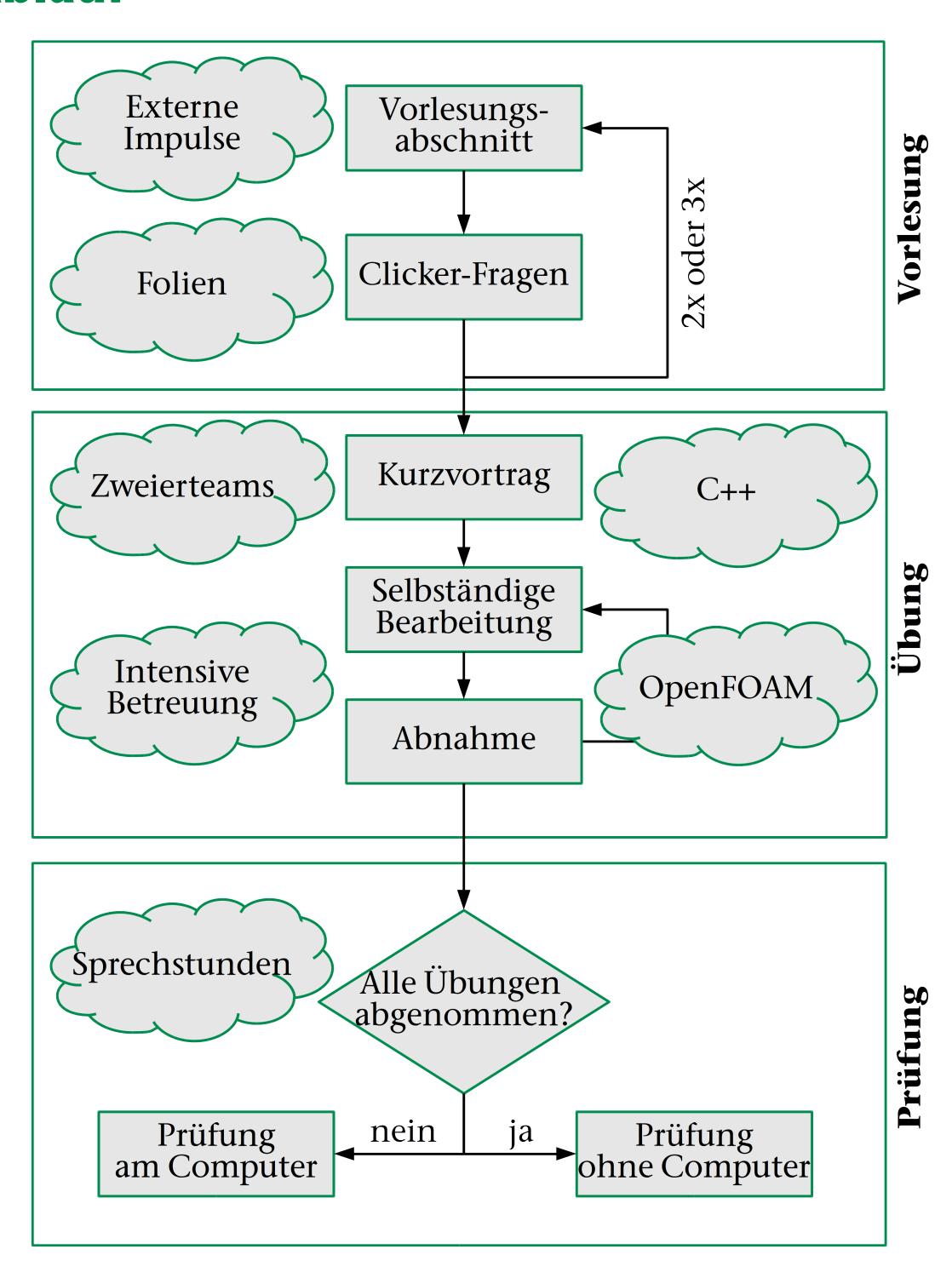
Die Veranstaltung wurde im Sinne des Constructive Alignment überarbeitet.

	Kennen	Können	Verstehen und Anwenden
fachlich	 Grundgleichungen der Strömungsmechanik aufschreiben und Einzelterme benennen Numerischen Verfahren zur Lösung und Diskretisierung der Grundgleichungen auflisten Begriffe, Verfahren und Modelle der numerischen Strömungsmechanik identifizieren 	 Erhaltungsgleichungen klassifizieren Verfahren zur Lösung der linearen Gleichungssysteme und zur Beschleunigung der Lösung erklären Einfache numerische Verfahren programmieren Geeignete Darstellungsform der numerischen Ergebnisse finden 	 Stabilität der numerischen Verfahren beurteilen Fehler der numerischen Berechnungen einschätzen und Fehlerquellen kategorisieren Einen numerischen Löser strukturieren Über Einsatz bestimmter Modelle und Verfahren entscheiden
methodisch	Kontinuierliches Lernen aneignen	 Prototyping-Prinzip bei Code-Erstellung anwenden 	 Fehler nach deren Ursache (Verfahren, Diskretisierung, Programmierung) trennen
sozial	 Vier-Augen-Prinzip verinnerlichen Probleme in interkul- turellen Teams kennen 	 Argumentieren und Argumente anderer erwägen Einen Konsens ausarbeiten 	 Durch Diskussion über eigenen Wissensstand reflektieren
persönlich		Kontinuierlich lernen und arbeiten	• Eigene Meinung hinterfragen

Konzept

- enge Verzahnung von Übung und Vorlesung
- Übung: 6 Termine C++, 6 Termine OpenFOAM
- Überleitung zu aktuellen Forschungsthemen
- Sprechstunden

Die numerischen Verfahren werden direkt mit der Programmiersprache C++ umgesetzt. Programmierkenntnisse sind zur Teilnahme an der Übung nicht erforderlich, da alle benötigten Kenntnisse zu Beginn der Übung in einem Kurzvortrag durch den Dozenten präsentiert werden. Schritt für Schritt werden die für das CFD-Code (OpenFOAM) Verständnis wichtige Grundlagen Objektorientierter Programmierung eingeführt.


			Summe:	119 Stunden
Prü	fungsvorbereitun	ıg		40 Stunden
13 x	Übung		170 Min.	37 Stunden
14 x	Vor-/Nachbereit	tung Vorlesung	120 Min.	28 Stunden
14 x	. Vorlesung		60 Min.	14 Stunden

Das Konzept bietet auch für Unerfahrene die Möglichkeit, die Methoden der numerischen Strömungsmechanik durch eigene Programmierung zu verstehen und auszutesten (**DON'T PANIC**).

Lehr-Lern-Methoden

- Prüfung am Computer
- Bonusregelung
- Peer Instruction
- Erstellung von Folien und Skript
- intensive Betreuung und Binnendifferenzierung
- geringe Hemmschwelle für Fragen
- Motivation Feedback zu erhalten
- Erreichen der Lernziele mit Classroom Assessment
- Unterstützung durch studentische Tutoren und Tutorinnen

Ablauf

Evaluation

- Evaluationsbögen
- direktes Gespräch mit Studierenden
- Reflexion durch persönliche Betreuung im Übungsbetrieb
- anonymisierte Auswertung der Prüfungsprotokolle

Sergey Lesnik, Alexander Bufe Institut für Technische Mechanik